NumPy 数据类型与属性

NumPy 数据类型

名称
描述

bool_

布尔型数据类型(True 或者 False)

int_

默认的整数类型(类似于 C 语言中的 long,int32 或 int64)

intc

与 C 的 int 类型一样,一般是 int32 或 int 64

intp

用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)

int8

字节(-128 to 127)

int16

整数(-32768 to 32767)

int32

整数(-2147483648 to 2147483647)

int64

整数(-9223372036854775808 to 9223372036854775807)

uint8

无符号整数(0 to 255)

uint16

无符号整数(0 to 65535)

uint32

无符号整数(0 to 4294967295)

uint64

无符号整数(0 to 18446744073709551615)

float_

float64 类型的简写

float16

半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位

float32

单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位

float64

双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位

complex_

complex128 类型的简写,即 128 位复数

complex64

复数,表示双 32 位浮点数(实数部分和虚数部分)

complex128

复数,表示双 64 位浮点数(实数部分和虚数部分)

numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。

数据类型对象 (dtype)

数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::

  • 数据的类型(整数,浮点数或者 Python 对象)

  • 数据的大小(例如, 整数使用多少个字节存储)

  • 数据的字节顺序(小端法或大端法)

  • 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分

  • 如果数据类型是子数组,那么它的形状和数据类型是什么。

字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

dtype 对象是使用以下语法构造的:

numpy.dtype(object, align, copy)
  • object - 要转换为的数据类型对象

  • align - 如果为 true,填充字段使其类似 C 的结构体。

  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

实例 1

import numpy as np
# 使用标量类型
dt = np.dtype(np.int32)
print(dt)

输出结果为:

int32

实例 2

import numpy as np
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)

输出结果为:

int32

实例 3

import numpy as np
# 字节顺序标注
dt = np.dtype('<i4')
print(dt)

输出结果为:

int32

下面实例展示结构化数据类型的使用,类型字段和对应的实际类型将被创建。

实例 4

# 首先创建结构化数据类型
import numpy as np
dt = np.dtype([('age',np.int8)]) 
print(dt)

输出结果为:

[('age', 'i1')]

实例 5

# 将数据类型应用于 ndarray 对象
import numpy as np
dt = np.dtype([('age',np.int8)]) 
a = np.array([(10,),(20,),(30,)], dtype = dt) 
print(a)

输出结果为:

[(10,) (20,) (30,)]

实例 6

# 类型字段名可以用于存取实际的 age 列
import numpy as np
dt = np.dtype([('age',np.int8)]) 
a = np.array([(10,),(20,),(30,)], dtype = dt) 
print(a['age'])

输出结果为:

[10 20 30]

下面的示例定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。

实例 7

import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) 
print(student)

输出结果为:

[('name', 'S20'), ('age', 'i1'), ('marks', 'f4')]

实例 8

import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) 
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student) 
print(a)

输出结果为:

[('abc', 21, 50.0), ('xyz', 18, 75.0)]

每个内建类型都有一个唯一定义它的字符代码,如下:

字符
对应类型

b

布尔型

i

(有符号) 整型

u

无符号整型 integer

f

浮点型

c

复数浮点型

m

timedelta(时间间隔)

M

datetime(日期时间)

O

(Python) 对象

S, a

(byte-)字符串

U

Unicode

V

原始数据 (void)

NumPy 数组属性

NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

NumPy 的数组中比较重要 ndarray 对象属性有:

属性
说明

ndarray.ndim

秩,即轴的数量或维度的数量

ndarray.shape

数组的维度,对于矩阵,n 行 m 列

ndarray.size

数组元素的总个数,相当于 .shape 中 n*m 的值

ndarray.dtype

ndarray 对象的元素类型

ndarray.itemsize

ndarray 对象中每个元素的大小,以字节为单位

ndarray.flags

ndarray 对象的内存信息

ndarray.real

ndarray元素的实部

ndarray.imag

ndarray 元素的虚部

ndarray.data

包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

ndarray.ndim

ndarray.ndim 用于返回数组的维数,等于秩。

实例

import numpy as np 
 
a = np.arange(24)  
print (a.ndim)             # a 现只有一个维度
# 现在调整其大小
b = a.reshape(2,4,3)  # b 现在拥有三个维度
print (b.ndim)

输出结果为:

1
3

ndarray.shape

ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。

ndarray.shape 也可以用于调整数组大小。

实例

import numpy as np  
 
a = np.array([[1,2,3],[4,5,6]])  
print (a.shape)

输出结果为:

(2, 3)

调整数组大小实例

import numpy as np 
 
a = np.array([[1,2,3],[4,5,6]]) 
a.shape =  (3,2)  
print (a)

输出结果为:

[[1 2]
 [3 4]
 [5 6]]

NumPy 也提供了 reshape 函数来调整数组大小。

实例

import numpy as np 
 
a = np.array([[1,2,3],[4,5,6]]) 
b = a.reshape(3,2)  
print (b)

输出结果为:

[[1, 2] 
 [3, 4] 
 [5, 6]]

ndarray.itemsize

ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。

例如,一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。

实例

import numpy as np 
 
# 数组的 dtype 为 int8(一个字节)  
x = np.array([1,2,3,4,5], dtype = np.int8)  
print (x.itemsize)
 
# 数组的 dtype 现在为 float64(八个字节) 
y = np.array([1,2,3,4,5], dtype = np.float64)  
print (y.itemsize)

输出结果为:

1
8

ndarray.flags

ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:

属性
描述

C_CONTIGUOUS (C)

数据是在一个单一的C风格的连续段中

F_CONTIGUOUS (F)

数据是在一个单一的Fortran风格的连续段中

OWNDATA (O)

数组拥有它所使用的内存或从另一个对象中借用它

WRITEABLE (W)

数据区域可以被写入,将该值设置为 False,则数据为只读

ALIGNED (A)

数据和所有元素都适当地对齐到硬件上

UPDATEIFCOPY (U)

这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新

实例

import numpy as np 
 
x = np.array([1,2,3,4,5])  
print (x.flags)

输出结果为:

  C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

最后更新于