NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。
ndarray 对象是用于存放同类型元素的多维数组。
ndarray 中的每个元素在内存中都有相同存储大小的区域。
Ndarray 组成
ndarray 内部由以下内容组成:
一个指向数据(内存或内存映射文件中的一块数据)的指针。
数据类型或 dtype,描述在数组中的固定大小值的格子。
一个表示数组形状(shape)的元组,表示各维度大小的元组。
一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。
ndarray 的内部结构:
Ndarray 创建
array
创建一个 ndarray 只需调用 NumPy 的 array 函数即可:
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
参数说明:
创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
实例 1:
import numpy as np
a = np.array([1,2,3])
print (a)
输出结果如下:
实例 2:
# 多于一个维度
import numpy as np
a = np.array([[1, 2], [3, 4]])
print (a)
输出结果如下:
实例 3:
# 最小维度
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print (a)
输出如下:
实例 4:
# dtype 参数
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print (a)
输出结果如下:
[ 1.+0.j, 2.+0.j, 3.+0.j]
empty
umpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:
numpy.empty(shape, dtype = float, order = 'C')
参数说明:
有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。
实例:
import numpy as np
x = np.empty([3,2], dtype = int)
print (x)
输出结果为:
[[ 6917529027641081856 5764616291768666155]
[ 6917529027641081859 -5764598754299804209]
[ 4497473538 844429428932120]]
注意数组元素为随机值,因为它们未初始化。
zeros
numpy.zeros 创建指定大小的数组,数组元素以 0 来填充。
numpy.zeros(shape, dtype = float, order = 'C')
参数说明:
'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组
实例:
import numpy as np
# 默认为浮点数
x = np.zeros(5)
print(x)
# 设置类型为整数
y = np.zeros((5,), dtype = np.int)
print(y)
# 自定义类型
z = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')])
print(z)
输出结果为:
[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[[(0, 0) (0, 0)]
[(0, 0) (0, 0)]]
ones
numpy.ones 创建指定形状的数组,数组元素以 1 来填充。
numpy.ones(shape, dtype = None, order = 'C')
参数说明:
'C' 用于 C 的行数组,或者 'F' 用于 FORTRAN 的列数组
实例:
import numpy as np
# 默认为浮点数
x = np.ones(5)
print(x)
# 自定义类型
x = np.ones([2,2], dtype = int)
print(x)
输出结果为:
[1. 1. 1. 1. 1.]
[[1 1]
[1 1]]
asarray
numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。
numpy.asarray(a, dtype = None, order = None)
参数说明:
任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组
可选,有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。
实例
import numpy as np
x = [1,2,3]
a = np.asarray(x)
print (a)
输出结果为:
numpy.frombuffer
numpy.frombuffer 用于实现动态数组。
numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。
numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)
注意:buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。
参数说明:
实例
import numpy as np
s = b'Hello World'
a = np.frombuffer(s, dtype = 'S1')
print (a)
输出结果为:
[b'H' b'e' b'l' b'l' b'o' b' ' b'W' b'o' b'r' b'l' b'd']
numpy.fromiter
numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。
numpy.fromiter(iterable, dtype, count=-1)
实例
import numpy as np
# 使用 range 函数创建列表对象
list=range(5)
it=iter(list)
# 使用迭代器创建 ndarray
x=np.fromiter(it, dtype=float)
print(x)
输出结果为:
numpy.arange
numpy 包中的使用 arange 函数创建数值范围并返回 ndarray 对象,函数格式如下:
numpy.arange(start, stop, step, dtype)
# 根据 start 与 stop 指定的范围以及 step 设定的步长,生成一个 ndarray。
参数说明:
返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。
实例:生成 0 到 5 的数组:
import numpy as np
x = np.arange(5)
print (x)
输出结果如下:
numpy.linspace
numpy.linspace 函数用于创建一个一维数组,数组是一个等差数列构成的,格式如下:
np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 参数说明:
参数 | 描述 start | 序列的起始值 stop | 序列的终止值,如果endpoint为true,该值包含于数列中 num | 要生成的等步长的样本数量,默认为50 endpoint | 该值为 true 时,数列中包含stop值,反之不包含,默认是True。 retstep | 如果为 True 时,生成的数组中会显示间距,反之不显示。 dtype | ndarray 的数据类型
以下实例用到三个参数,设置起始点为 1 ,终止点为 10,数列个数为 10。
import numpy as np
a = np.linspace(1,10,10)
print(a)
输出结果为:
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
设置元素全部是1的等差数列:
import numpy as np
a = np.linspace(1,1,10)
print(a)
输出结果为:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
将 endpoint 设为 false,不包含终止值:
import numpy as np
a = np.linspace(10, 20, 5, endpoint = False)
print(a)
输出结果为:
如果将 endpoint 设为 true,则会包含 20。
以下实例设置间距。
实例
输出结果为:
(array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]), 1.0)
[[ 1.]
[ 2.]
[ 3.]
[ 4.]
[ 5.]
[ 6.]
[ 7.]
[ 8.]
[ 9.]
[10.]]
numpy.logspace
numpy.logspace 函数用于创建一个等积数列。格式如下:
np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
# base 参数意思是取对数的时候 log 的下标。
序列的终止值为:base ** stop。如果endpoint为true,该值包含于数列中
该值为 true 时,数列中中包含stop值,反之不包含,默认是True。
import numpy as np
# 默认底数是 10
a = np.logspace(1.0, 2.0, num = 10)
print (a)
输出结果为:
[ 10. 12.91549665 16.68100537 21.5443469 27.82559402
35.93813664 46.41588834 59.94842503 77.42636827 100. ]
将对数的底数设置为 2 :
import numpy as np
a = np.logspace(0,9,10,base=2)
print (a)
输出如下:
[ 1. 2. 4. 8. 16. 32. 64. 128. 256. 512.]
副本和视图
副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。
视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。
视图一般发生在:
调用 ndarray 的 view() 函数产生一个视图。
副本一般发生在:
Python 序列的切片操作,调用deepCopy()函数。
调用 ndarray 的 copy() 函数产生一个副本。
无复制
简单的赋值不会创建数组对象的副本。 相反,它使用原始数组的相同id()来访问它。 id()返回 Python 对象的通用标识符,类似于 C 中的指针。
此外,一个数组的任何变化都反映在另一个数组上。 例如,一个数组的形状改变也会改变另一个数组的形状。
import numpy as np
a = np.arange(6)
print ('我们的数组是:')
print (a)
print ('调用 id() 函数:')
print (id(a))
print ('a 赋值给 b:')
b = a
print (b)
print ('b 拥有相同 id():')
print (id(b))
print ('修改 b 的形状:')
b.shape = 3,2
print (b)
print ('a 的形状也修改了:')
print (a)
输出结果为:
我们的数组是:
[0 1 2 3 4 5]
调用 id() 函数:
4349302224
a 赋值给 b:
[0 1 2 3 4 5]
b 拥有相同 id():
4349302224
修改 b 的形状:
[[0 1]
[2 3]
[4 5]]
a 的形状也修改了:
[[0 1]
[2 3]
[4 5]]
视图或浅拷贝
ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数更改不会更改原始数据的维数。
import numpy as np
# 最开始 a 是个 3X2 的数组
a = np.arange(6).reshape(3,2)
print ('数组 a:')
print (a)
print ('创建 a 的视图:')
b = a.view()
print (b)
print ('两个数组的 id() 不同:')
print ('a 的 id():')
print (id(a))
print ('b 的 id():' )
print (id(b))
# 修改 b 的形状,并不会修改 a
b.shape = 2,3
print ('b 的形状:')
print (b)
print ('a 的形状:')
print (a)
输出结果为:
数组 a:
[[0 1]
[2 3]
[4 5]]
创建 a 的视图:
[[0 1]
[2 3]
[4 5]]
两个数组的 id() 不同:
a 的 id():
4314786992
b 的 id():
4315171296
b 的形状:
[[0 1 2]
[3 4 5]]
a 的形状:
[[0 1]
[2 3]
[4 5]]
使用切片创建视图修改数据会影响到原始数组:
import numpy as np
arr = np.arange(12)
print ('我们的数组:')
print (arr)
print ('创建切片:')
a=arr[3:]
b=arr[3:]
a[1]=123
b[2]=234
print(arr)
print(id(a),id(b),id(arr[3:]))
输出结果为:
我们的数组:
[ 0 1 2 3 4 5 6 7 8 9 10 11]
创建切片:
[ 0 1 2 3 123 234 6 7 8 9 10 11]
4545878416 4545878496 4545878576
变量 a,b 都是 arr 的一部分视图,对视图的修改会直接反映到原数据中。但是我们观察 a,b 的 id,他们是不同的,也就是说,视图虽然指向原数据,但是他们和赋值引用还是有区别的。
副本或深拷贝
ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。
import numpy as np
a = np.array([[10,10], [2,3], [4,5]])
print ('数组 a:')
print (a)
print ('创建 a 的深层副本:')
b = a.copy()
print ('数组 b:')
print (b)
# b 与 a 不共享任何内容
print ('我们能够写入 b 来写入 a 吗?')
print (b is a)
print ('修改 b 的内容:')
b[0,0] = 100
print ('修改后的数组 b:')
print (b)
print ('a 保持不变:')
print (a)
输出结果为:
数组 a:
[[10 10]
[ 2 3]
[ 4 5]]
创建 a 的深层副本:
数组 b:
[[10 10]
[ 2 3]
[ 4 5]]
我们能够写入 b 来写入 a 吗?
False
修改 b 的内容:
修改后的数组 b:
[[100 10]
[ 2 3]
[ 4 5]]
a 保持不变:
[[10 10]
[ 2 3]
[ 4 5]]