NumPy 线性代数
NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:
dot
两个数组的点积,即元素对应相乘。
vdot
两个向量的点积
inner
两个数组的内积
matmul
两个数组的矩阵积
determinant
数组的行列式
solve
求解线性矩阵方程
inv
计算矩阵的乘法逆矩阵
numpy.dot()
numpy.dot() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,它的通用计算公式如下,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和: dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
。
参数说明:
a : ndarray 数组
b : ndarray 数组
out : ndarray, 可选,用来保存dot()的计算结果
输出结果为:
计算式为:
[[1*11+2*13, 1*12+2*14],[3*11+4*13, 3*12+4*14]]
numpy.vdot()
numpy.vdot() 函数是两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数是多维数组,它会被展开。
输出结果为:
计算式为:
1*11 + 2*12 + 3*13 + 4*14 = 130
numpy.inner()
numpy.inner() 函数返回一维数组的向量内积。对于更高的维度,它返回最后一个轴上的和的乘积。
输出结果为:
多维数组实例
输出结果为:
内积计算式为:
1*11+2*12, 1*13+2*14 3*11+4*12, 3*13+4*14
numpy.matmul()
numpy.matmul() 函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。
另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。
对于二维数组,它就是矩阵乘法:
输出结果为:
二维和一维运算:
输出结果为:
维度大于二的数组 :
输出结果为:
numpy.linalg.det()
numpy.linalg.det() 函数计算输入矩阵的行列式。
行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。
换句话说,对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。
输出结果为:
输出结果为:
numpy.linalg.solve()
numpy.linalg.solve() 函数给出了矩阵形式的线性方程的解。
考虑以下线性方程:
x + y + z = 6 2y + 5z = -4 2x + 5y - z = 27
可以使用矩阵表示为:
如果矩阵成为A、X和B,方程变为:
AX = B 或 X = A^(-1)B
numpy.linalg.inv()
numpy.linalg.inv() 函数计算矩阵的乘法逆矩阵。
逆矩阵(inverse matrix):设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
输出结果为:
现在创建一个矩阵A的逆矩阵:
输出结果为:
最后更新于